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1. Introduction

The gap between wholesale electricity markets and end-

users can be bridged by retail electricity providers 

(REP’s) in market discussions. In addition to the forward 

contracts, the REP’s as a mediator role in electricity 

markets purchase part of the consuming demand through 

the pool market [1]. Different factors such as price 

variations, volatile loads and the potential for market 

power exertion by generation companies may bring 

financial risks to retail electricity providers. 

A retail electricity provider can manage the market 

risks by employing the demand response programs. The 

REP’s can propose the selling price based on fixed 

tariffs, time-of-use price or real-time price during the 

contract period. Moreover, due to the risk in the market 

price, the electricity consumers can retain themselves 

through long-term contracts which are held with REP’s. 

In these circumstances; the REP’s can implement a 

combination of approaches to manage the financial risks 

to be protected from the wholesale markets’ risks [2]. 

One way to reduce the risk is well-designed demand 

response program (DRP). The U.S. DRP is defined as the 

ability of residential, commercial and industrial to modify 

the electrical energy-consumption patterns as a response 

to changes in electricity prices over the time or to 

incentive payments to find rational prices and reliability 

of the network. The DRP can be categorized into two 

groups based on this definition [3]: time-based rates and 

incentive-based programs. For example, a combination of 

time incentive based demand response program, and real 

time pricing was proposed in [4] to reduce the peak load 

through energy management at the customers’ side. 

To implement the DRP, it is necessary that consumers 

are equipped with smart meters. Finally, DRP can be 

exploited by the REP’s as an option enabled through 

smart technology to enhance the anticipated benefit. 

Moreover, with the modern smart technologies in grids 

and home energy management systems, the DRPs could 

be effectively used by electricity consumers to moderate 

some financial risks [5]. 

Another way to overcome risk is making use of 

distributed generation (DG) and energy storage systems 

(ESSs) owned by REP’s, during price spikes. The REP’s 

with light physical assets, such as DG and ESS, serve 

electricity end-users in the distribution level [6]. The 

effect of energy storage systems have been studied by 

many researchers [7, 8]. Reference [7] investigates the 

participation of energy storage systems in the demand 

response program by proposing two scheduling 

algorithms. 

There are various papers focusing on REP’s for 

specification of selling at three time periods containing 

short-term, medium-term and long-term scheduling. In 

long-term scheduling, references [9, 10] minimize total 

cost without pricing, DRP, smart meter technology and 

maximizing the anticipated benefit considering 

uncertainty modeling is proposed. Therewith, the review 

of studies related to medium-term scheduling shows that 

the objective function is minimizing cost [11, 12], 

maximizing benefit [13-15]. Furthermore, the solution 

technique is based on hybrid heuristic algorithm or 

GAMS optimization package. Finally, the researches 

related to short-term scheduling show that the objective 

function is maximizing benefit [17-20] [21] and 

minimizing cost [22-24]. Unlike the two time periods 

above, real-time pricing as well as fixed pricing and time-

of-use pricing are exploited as types of selling price in 

short-term scheduling. Reference [25] used real-time 

pricing in the retail price determination problem in the 

smart grid to increase retailer' profit.  The load 

uncertainty modeling is not considered for locational 

marginal price (LMP) in the presented papers. Also, few 

studies in the literature attempt to take into account the 

DRP in the energy supply procurement problem of the 

REP’s based on a multi-objective optimization model. 

Only, Ref. [26] proposes a multi-objective optimization 

for planning direct load control for a group of customers 

from the viewpoint of retailers. 

In this paper, the short-term scheduling for DRP with 

asset-light retailers is proposed. The main idea is to 

determine an optimal chassis for these retail electricity 

providers to cooperate them in designing the optimal 

incentive-based DRP in retail markets, considering the 

short-term advantages and load uncertainties on 

locational marginal prices (LMP). It is assumed that the 

DISTCO’s do not participate in the suggested DRP and 

the only REP’s and consumers are involved in the 

suggested DRP. Short-term DRP scheduling of the light-

asset retailers who provide the electricity consumers is 

formulated through a multi-objective optimization model 

with practical operational limitations. This type of 

scheduling supports the REP’s to decrease the peak 

periods at the nodes that they provide to the customers. In 

this paper, the non-dominated sorting genetic algorithm 

(NSGA-II) [27] is used to solve the multi-objective 

optimization which maintains the diversity of the 

solutions by providing a crowding distance sorting 

approach. The innovation of this work is organized 

around three important matters: 

 Formulate the short-term scheduling for DRP as a

multi-objective optimization model.

 The load uncertainty on the LMPs is characterized.

 Solving multi-objective optimization by NSGA-II as

a robust GA-based algorithm to choose the best

compromise solution from a set of Pareto solutions.

In addition, the main contributions are illustrated as

follows: 

 Provide an optimal incentive-based demand response

program to electricity retailers to reduce the financial

losses in the market.

 Only the retailers and the customers are involved in

the proposed demand response program.

 Consideration of energy generation and storage units

effect in the demand response program to manage the

market price by the electricity retailer.

 Investigation of the demand-side reserve role in the

energy market.
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The structure of the paper is targeted as follows. The 

multi-objective model for optimal short-term DRP 

scheduling with REP’s under different problem 

constraints is presented in section 2. In Section 3, the 

load uncertainties on the locational marginal prices are 

modeled. The multi-objective optimization algorithm is 

presented in Section 4. A test system is simulated and 

analyzed in Section 5. Finally, the relevant conclusions 

are introduced in Section 6. 

2. Proposed Framework

The REP’s can employ new instruments and approaches 

or make use of different strategies to reduce risks linked 

to the severe market price variations. In this regard, this 

paper targets to present how a REP’s with few generation 

units as well as storages employs the DRPs to manage the 

varieties of the power energy market. Ref [6] was 

introduced the REP’s with light physical assets as asset-

light retailer. If strategies applied by REP to avoid short-

term financial or economical losses are well-

premeditated, they can obtain additional profits for the 

REP’s. In the smart grids, the DRPs can be exploited for 

flexible load management to reduce peak load and the 

purchased energy cost [28]. The fundamental goal of this 

study is to formulate a model to determine the hourly 

financial incentives suggested to the consumers for short-

term horizon. The short-term DRP scheduling of the 

asset-light retailers who provide the electricity consumers 

is analyzed in this paper as a multi-objective optimization 

problem with practical operational limitations. In this 

proposed model, to avoid the high network costs in the 

long-term, the REP’s have several options to moderate 

their daily profit. The asset-light REP’s contain a few 

light physical assets, such as DG units and ESSs in the 

distribution network. Considering that every battery 

technology has its own economic and technical 

properties, it is necessary to decide which battery 

technology is the most suitable choice in distribution 

networks. In this paper, the characteristics of Sodium-

sulfur battery (Na-S) and Zinc-bromine battery (Zn-Br) 

are investigated [29]. The retailer determine the optimal 

demand bids, based on the dispatching decisions of its' 

DG units and/or different types of ESSs for the day 

ahead. These intentions can affect the optimal financial 

incentives offered to customers to persuade them to adapt 

their consumption profile. In order to clarity and 

simplicity the assumptions are given below: 

 The model assumes that the REP’s are price-taker in

the wholesale electricity market. The considered

REP’s are price-taker, which means that it has no

ability to change the electricity prices in the market.

Prices in the market are behaved as an exogenous

parameter.

 DGs and ESSs in this model that belong to retailer,

just submit power demand bids and do not offer their

generation and storage capacity to sell energy in the

wholesale market.

 The different types of battery technology are

considered.

 The uncertainty of the battery technological behavior

for optimal battery planning is taken into account.

This important issue is addressed using the fuzzy

models and operators.

 The load is considered as uncertainly data.

2.1. Fuzzy Logic Based Uncertainty 

Modeling 

Different battery technologies show different behavior 

based due to their different characteristics, however the 

technical and economical behavior is not deterministic. 

The uncertainty of the behavior has to be taken into 

account in a comparative study. For example, the 

uncertainty of the cost of capacity in Figure 1 is shown 

using box plots. In each box segment, the data is given 

for example, the data as example average (median), the 

interquartile range (middle fifty) and range (excluding 

outliers) is presented [30]. 

Fig. 1. Variations of capacity cost as well as the average 

For probabilistic studies the middle fifty or the range 

(excluding outliers) are used for modeling uncertainty, 

while the average data is taken into use in deterministic 

studies. We have defined two fuzzy values for each 

parameter accordingly. The triangular fuzzy values 

assigned to middle fifty and the range (excluding 

outliers) are shown in figure 2. Both models dedicate the 

maximum membership function to the average cost [31]. 
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Fig. 2. Dedication of triangular fuzzy values to a box plot 

The middle fifty models contain the most possible 

situations . When using the model of range (excluding 

outliers) the uncertainty intensifies [32, 33]. 
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2.2. Battery Technologies 

Rechargeable batteries are categorized into several types 

based on their structures, used materials, and the 

mechanism of storage. Any battery type has its own 

planning criteria. Capacity cost in $/kWh, power rating 

investment cost in $/kW, costs of battery replacement in 

$/kWh, yearly O&M costs in $/kW, total efficiency, 

maximum depth of charge limit, and the  total length of 

life, indicated in number of charge/discharge cycles, are 

the key considerations for optimal battery sizing. We 

have concentrated on Sodium-sulfur batteries’ (Na-S) and 

Zinc-bromine batteries’ (Zn-Br) characteristics in this 

research. Reference [34] gives a comprehensive review 

on these technologies with detailed technical and 

economic considerations. Table 1 compares the two 

technologies, where the presented values are the mean 

values given by a distribution range.  

Table. 1. The mean value of parameters of the battery 

technologies [34] 

Type 

of 

battery 

Capacity 

cost 

($/kWh) 

Power 

rating 

cost($/kW) 

Replacement 

cost($/kWh) 

O&M 

cost 

($/kW-

year) 

Efficiency 

(%) 

Na-S 363 446 219 4.4 83 

Zn-Br 238 541 238 5.2 65 

2.3. Objective Functions 

The objective functions of this paper are considered as 

REP’s payoff and total peak demand as follows. 

2.3.1. REP’s Payoff Based Objective Function 

The retail electricity providers can increase the short-

term payoff by using their generation/ storage facilities in 

the distribution network and the DRPs. Employing this 

model, the REP’s will tend to use their own resources 

during periods with high market price. In Eq. (1), the 

ESSs’ charging energy is purchased from the market, and 

the related cost of charging is calculated based on the 

uncertainty of LMPs. The cost of DG units consists of the 

startup cost and the quadratic cost function [35]. The first 

objective function that will be maximized is as follows: 

 
   











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T

t c

t
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t

b

t

c

t
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cx tFItCESStCDGtCGwLMPIIRPayoff
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)()()()(.)).((
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Where, 

(2) 
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t

g

start

g

t

gg

t

gg

t

gg vcPPutCG ).).(..()( 2

(3) 
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t

g

p

g PctCDG .)(

(4) 



ESSb
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ss PctCESS ,deg.)(

(5) 



b
xc

t

c

b

c

t

b mIFitFI )..()(

Where t is time periods (h), b is buses, c is the end use 

electricity customers, g is number of DGs, s is number of 

ESSs, gP is real power output of the g
th 

DG (kW), gu  is 

a binary variable which shows the commitment status of 

the g
th 

DG unit (1 means the unit is on), gv is binary 

variable indicating start-up status of the g
th

 DG (1 means 

the unit starts up at the beginning of t
th

 period), 
/in out

sP  is 

the charging/discharging power of ESS s during each 

time period (kWh), cm  is a binary variable indicating the 

time periods at which the retailer should send incentives 

to the customers (1 means that incentives should be sent 

to the c
th

 customer by the retailer), FI is financial 

incentive for DR in DAM ($/kW h), I  is the expected 

demand reduction by the c
th

 customer (kW), T is the time 

horizon for scheduling (in number of time periods), 

( , , )g   are quadratic cost coefficients of the g
tj
 

controllable DG unit ($/h,$/kW h, $/(kW h)2), 
g

startC  is 

start-up cost of the g
th

 controllable DG unit ($),
g

pC is 

production cost of the g
th

 uncontrollable DG unit ($/kWh) 

and cR  is the electricity price offer by retailers. 

2.3.2. Peak Demand Based Objective Function 

The second objective function to minimize is the total 

peak demand at all buses served by REPs according to 

Eq. (6). 

(6) 
 jb

bM

Where bM is the peak demand at bus b. 

2.4. Constraints 

The constraints of the proposed objective functions are 

explained as follow: 

2.4.1. Purchase Limit 

Eq. (8) is applied to the objective function (6) to 

minimize the maximum demand at each bus. 
btppppIIw

DGb
x

Gb
x

cb
x

ESSb
x

ESSb
x g

t

g

g

t

g

c s s

tout

s

tin

s

t

c

t

c

t

b    
     

,)( ,,

(2) 

Where bw  is the electrical energy which is purchased 

from the wholesale market by retailer at bus b (kW). 

2.4.2. Real Power Generation Limit 

The proposed model assumes that the generated 

electricity of DG units is as high as their maximum 

installed capacity. The lower and upper bounds of any 

DG unit limit the active power output as follows: 

Where 
MinlMax

gP is minimum/maximum power 

generation of the g
th 

DG unit (kW). 

Constraint (11) demonstrates the relation between the 

unit commitment and binary decision variables of startup, 

shut down. 
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2.4.3. Battery Limit 

The charging/discharging power of a battery is 

surrounded by the capacity and the rated power of ESS 

[36]. 

(10) t

s
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
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






(14) 1 t

s

t

s hk

Where 
MinlMax

sE is the minimum or maximum 

storage level of the s
th

 ESS (kWh), 
,in MinlMax

sR  minimum

or maximum charging rate of the s
th

 ESS (kW/h), 
,out MinlMax

sR is minimum or maximum discharge rate of

the s
th

 ESS s (kW/h), sk  is binary variable which

indicates discharging status of the s
th

 ESS (1 means it is 

being discharged), sh is a binary variable which

indicates charging status of the s
th

 ESS (1 means it is 

being charged) and 
s

storedE  is the storage level of the s
th

 

ESS at the end of each time period (kWh). 

Eq. (13) indicates the charging and discharging power 

at each time period of the scheduling horizon. Imposed 

constraint of Eq. (14) excludes the simultaneous 

charge/discharge activities in any time period. 

2.4.4. Financial Incentives Limitation 

The incentives of the DRP are suggested only for hours 

that the customer is expected to consume more than the 

nominal load profile. A stream of revenue could be 

reached by the customer within this step. Each kWh less 

than the forecasted load is rewarded by the REPS for the 

hours that the retail electricity providers offer financial 

incentives. Limitation is expressed as the below: 

(8) btMw b

t

b  ,0

(15) 
maxmin ..

)(.

c

t

c

t

cc

t

c

t
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t
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t

c

FimFiFim

FifmI


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3. Impact of Load on LMPs

(9) 
t

gg

t

g

t

gg uPPuP .. maxmin 

Locational marginal price is defined as the marginal cost 

of supplying the next increment of electric energy at a 

specific bus while considering the generation marginal 

cost and the physical aspects of the transmission system. 

Social welfare is the difference between the costs of the 

generated ( )c p  energy and the consumers’ benefits 

( )B p :

(16) Social Welfare:  ( ) ( )B p c p
The clearing price is determined by optimizing this 

function with the Independent System Operator (ISO) 

considering the constraints of the system. In most cases, 

there is either no specific formula for ( )B p  or it is very 

complex. As a consequence, ( )B p  is neglected and the 

following function is minimized (according to the 

negative sign) [37]: 

(17) 

Where, ( )ic p  is the cost function of every generator

and is usually explained with 
0

2 cbpapCi  in 

which n is the number of generators and P is the 

generated power. Equation (17) can be solved based on 

DCOPF [38]. In this situation, the Lagrange function of 

optimization problem is derived as follows: 

(18) 
  
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









n

i

n

j

jiijijij

n

i

n

j

jiijii

n

i

i YPYIICl
1 1

max

1 11

)()()( 

In (18), i is the LMP for the bus i, i is the angle of

bus i, ijY is the ith row and jth column of the admittance

matrix,   is the coefficient related to spot price and iI

is the injected power.  

It should be noted that according to DC load flow, cost of 

power loss has been neglected [37, 38]. 

4. Multi-objective Solution Strategy

Non-dominated sorting based approach is accommodated 

combining with the genetic algorithm to optimize the 

multiple objective problems. The multi-objective solution 

strategy is calibrated with regards to the limitation of the 

Pareto solutions. In this paper, the NSGA-II is 

programmed to analyze the multi-objective problem 

because it has been proved to be one of the most efficient 

algorithms subject to definite constraints. The multi-

criteria problem including m objectives, which generally 

otherness with each other, could be calculated as: 

(19) 
1 2[ ( , ), ( , ),..., ( , )] 1,2,...,NPOptimize F x u F x u F x u NP m

To perform of this strategy, the control variables are 

randomly generated as initial population. After 

evaluating the objective functions, a non-dominated 

5
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sorting strategy is exploited on the calculated solutions to 

find a Pareto set. The most effective Pareto set is 

achieved by comparison procedure. Sorting process is 

exploited to classify the greatest solutions in the optimal 

Pareto set. Fuzzy based decision mechanism is employed 

to select the greatest compromised solutions depending 

on the issue requirements. 

4.1. Non-Dominated Sorting 

A non-dominated sorting methodology is placed on the 

multi-objective optimization to get the optimal Pareto set. 

Let us suppose two solutions F1 and F2, in a single 

optimal Pareto set. They are investigated for the next 

possibilities: one overcomes another or not one of them 

dominates each other. A design vector u1 overcomes u2, 

when the next conditions are satisfied: 

(20) )()(...,,2,1
)()(...,,2,1

21

21

uFuFmj
uFuFmi

jj

ii




The sorting procedure is exploited to acquire the most 

effective Pareto set solutions. Solutions which can be 

non-dominated over the entire search space are called 

optimal Pareto set front and build the Pareto front set. 

4.2. Fuzzy Decision Making 

Since acquiring the greatest Pareto set solutions, the most 

effective compromised solution predicted on a choice 

prepared is extracted by the designer. The fuzzy based 

decision mechanism is exploited to acquire the optimal 

Pareto set solution. Membership value is funded for the 

ith objective using Eq. (21) [36, 39] in the jth Pareto 

optimal solution. 
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This value for qth Pareto front solution can be 

performed by using of Eq. (22).  
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Where, 
pW is the weight ratio of the pth fitness

function and NPFS is the total amount of solutions in the 

most effective Pareto set. Preferred level of the Pareto set 

solutions can be recognized across normalized values. 

Start

Input data of forecasted load and LMPs.

Location of DGs, customers and ESSs.

Technical and cost characteristics of DG units.

Technical and cost characteristics of ESSs.

Characteristics of customers toward incentives.

Calculate the two objective 

functions for each individual

Non-dominated sorting and 

calculating the crowding distance

Tournament selection 

Crossover and mutation 

Stop criterion 

reached?

Calculate objective function

Combine the parent and offspring 

Select the N first individuals as parent 

End

Generate the initial population of NSGA-II

No

Yes

Non-dominated sorting and 

calculating the crowding distance

Evaluate final compromise solutions 

chosen by the retailer 

Pareto front (non-dominated solutions) 

Fig. 3. Flowchart for multi-objective optimization problem 

of retailers based on NSGA-II. 

4.3. Optimization Procedure 

The proposed multi-objective model for REPs involves 

control variables. The initialization process is designed so 

that the algorithm starts with a feasible population for 

energy storage value of ESSs, generation level of DG 

units, financial incentives and always makes feasible 

candidates during the crossover and mutation operators 

[40]. The Mb is another control variable generated in the 

initialization process by continuous uniform distributions. 

Considering the maximum possible demand at each 

bus during the planning horizon to provide the demands 

and charge the ESSs. The binary control variables 

representing the unit commitment status of the DG units 

6
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and those that refer to the time periods with financial 

incentives for the demand reduction are also randomly 

generated during the initialization process. Figure 3 

shows the flowchart of the proposed approach for the 

multi-objective optimization problem of REPs in the 

short-term markets. 

5. Simulation Results

The IEEE 24 bus reliability test system (Fig. 4) is 

modified in this section to include the retailers as 

participants of the electricity market. It is assumed that 

each retailer is serving loads at several buses and their 

assets are located in the distribution networks that are 

connected to that bus. In Fig. 4, the buses that each 

retailer is serving loads in them are connected to the 

retailers with dashed red lines. The retailers participate in 

the transmission-level wholesale electricity market and 

purchase the demand of the customers that they serve in 

the distribution network. Retailers set up their optimal 

plans based on the probabilistic LMPs and the 

uncertainty in load profile of the customers. Based on 

main structure materials and the storage mechanism, the 

rechargeable batteries are categorized in several types. 

Each type of batteries has individual planning features. 

The characteristics of the ESSs that the retailers own in 

distribution networks are shown in Table 2. Each retailer 

may have one or more ESSs at each of the buses that they 

serve loads. In Table 3, the characteristics of the DG 

units that each retailer owns in the distribution network 

are presented. Four price taker retailers out of many 

retailers that are serving loads in this system are selected 

in this section to analyze their optimal scheduling. These 

retailers serve 30 customer groups at the buses shown in 

test system. The demand for each customer group 

without uncertainty is shown in Fig. 5. These customers 

have signed contracts with the electricity retailers and the 

retail rates are specified in advance. In Fig. 6, the 

electricity retail rates of the customers with the retailers 

are shown. In this section, the day-ahead the probabilistic 

LMP and load demand are used for the scheduling 

horizon of 24 h. 
G G
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Fig. 4. Modified IEEE 24 bus reliability case study.
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Table. 2. Mean value of parameters of battery technologies 

[34]. 
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Table. 3. Technical and cost characteristics of DG units. 

In Table 4, the data that the retailer needs to calculate 

the optimal DR schedules is presented. It is assumed that 

the retailers can achieve a good fit of this function with a 

polynomial regression model. The coefficients of the 

quadratic functions that have been used to model the 

elasticity of end-users toward financial incentives for the 

demand reduction are shown in this table. The retailers 

obtain this information by repeatedly interacting with the 

electricity end-users. The bus that each customer is 

located is also given in this Table. In order to find the 

optimal type of batteries, two case studies are considered 

in this study. In case 1, the main purpose is to show the 

effectiveness of the proposed model and the NSGA-II 

algorithm in solving the short-term problems of 

electricity retailers with Na-S battery technology and in 

case 2 the electricity retailers equipped with Zn-Br 

battery technology. 

In order to verify the simulation method, at first the 

model has been developed based on the reference paper 

[17] and comparative study has been implemented and

then the improved model has been extended.

Case 1: 

The multi-objective optimization problem is solved in 

this section with the NSGA-II. The battery technology 

for retailers is Na-S. Fig. 7 illustrates the Pareto front of 

the optimization problem solved by the NSGA-II. The 

suitable values for the parameters of the algorithm are 

determined empirically by running some trial 

simulations. The best algorithm parameters that regulate 

the crossover and mutation operators are given for this 

case study in Table 5. The financial incentives that the 

retailers offer to the end-users for retailer 1 in this case 

are shown in Table 6. 

Case 2: 

In Fig. 8, the Pareto fronts obtained by the NSGA-II 

for the all retailers that used from Zn-Br battery 

technology are presented. As shown in this Figure, two of 

the retailers (3 and 4) are expecting negative payoffs (i.e., 

financial losses) in the day-ahead market. Employing the 

strategies can only reduce the financial losses and does 

not make any profit for them. The optimal points are 

shown in Fig. 8 by the pointers. 

Table. 4. DR characteristics of end-users.

Table. 5. Best parameters for 24 h scheduling
Parameters Values 

Population size 1500 

Number of iterations 1250 

Crossover probability 0.80 

Mutation Probability 0.30 

Mutation rate 0.03 

Mutation strength 
10% of the variable range (max-

min) 

σ (range of arithmetic crossover) 0.03 

Table. 6. Financial incentives for the customers of retailer 1 

($) in case 1.
bus Customer 1 Customer 2 Customer 3 Customer 4 

8 - - - 0.0634 

9 - 0.0549 - 0.0612 

10 - 0.0551 - 0.0629 

11 0.0520 0.0563 - 0.0641 

12 0.0514 0.0539 - 0.0610 

13 0.0503 0.0530 - 0.0596 

14 0.0510 0.0572 - 0.0610 

15 0.0547 0.0589 - 0.0539 

16 0.0512 0.0551 - 0.0608 

17 0.0513 0.0564 - 0.0642 

18 - - - 0.0626 

19 0.0543 0.0570 - 0.0614 

20 - 0.0593 - 0.0653 

21 0.0505 0.0585 0.592 0.0684 

22 0.0544 - - 0.0669 

23 0.0536 - - 0.0639 
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 Fig. 7. Pareto front for retailers at case 1.

The results are compared with the case that the 

retailer implements all their physical assets and the DR 

programs. The optimal points in the Pareto front change 

in a relatively small range when the ESSs or DR 

programs are considered solely. It is due to the charging 

and discharging limits of the ESSs, the ESSs’ capacity 

for storage and the limitations of customers in reducing 

their consumption. These assets and strategies can 

provide a wide range of options for the decision maker, 

when they are considered with the DG units located in 

the distribution network. It is obvious that the Zn-Br 

battery technology is suitable than Na-S battery in 

uncertain conditions.  

6. Conclusions

In this paper, a multi-objective decision-making 

framework was developed for retail electricity providers 

with light physical assets to schedule their resources to 

optimize the financial losses. The selected optimal points 

are expected payoff 1220 ($) in maximum demand 

5580(kWh) for retailer (1), expected payoff 1050 ($) in 

maximum demand 19400 (kWh) for retailer (2), expected 

payoff -60 ($) in maximum demand 4360(kWh) for 

retailer (3), expected payoff -725 ($) in maximum 

demand 5650 (kWh) for retailer (4). By using the 

proposed framework, the REPs are able to make trade-off 

decisions considering the conflicting targets of 

minimizing the peak demand and maximizing the profit 

in order to incentive-based DRP in retail markets. Fuzzy 

logic modeling is employed for simulating load 

uncertainty on the locational marginal prices. 

Considering the complexity and non-linearity of the 

proposed model, NSGA-II is used. The Modified IEEE 

24 bus reliability case study findings show that the 

designed DRPs can provide and guarantee the short-term 

benefits of REPs in electricity markets. 

900 950 1000 1050 1100 1150 1200 1250 1300
5350

5400

5450

5500

5550

5600

Expected payoff ($)

T
o
ta

l m
a
xi

m
u
m

 d
e
m

a
n
d
 (

kW
h
)

Retailer 1

 

without uncertainty

with uncertainty

500 600 700 800 900 1000 1100
1.85

1.86

1.87

1.88

1.89

1.9

1.91

1.92

1.93

1.94
x 10

4

Expected payoff ($)

T
o
ta

l m
a
xi

m
u
m

 d
e
m

a
n
d
 (

kW
h
)

Retailer 2

 

without uncertainty

with uncertainty

-400 -350 -300 -250 -200 -150 -100 -50
3950

4000

4050

4100

4150

4200

4250

4300

4350

4400

Expected payoff ($)

T
o
ta

l m
a
xi

m
u
m

 d
e
m

a
n
d
 (

kW
h
)

Retailer 3

 

without uncertainty

with uncertainty

-1000 -950 -900 -850 -800 -750 -700
5350

5400

5450

5500

5550

5600

5650

5700

Expected payoff ($)

T
o
ta

l m
a
xi

m
u
m

 d
e
m

a
n
d
 (

kW
h
)

Retailer 4

 

without uncertainty

with uncertainty

Fig. 8. Pareto front for retailers at case 2.
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